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Abstract

The effect of misalignment on the stability of two rotors connected by a flexible mechanical coupling
subjected to angular misalignment is examined. The study performed is to understand the effect of angular
misalignment on the stability of rotating machinery. The dimensionless stability criteria of the non-linear
system of differential equations of two misaligned rigid rotors are derived using Liapunov’s direct method.
A rigid disk is attached at the middle of each rotor, where the rotor–disk assembly is mounted on two
hydrodynamic bearings with four stiffness and four damping coefficients. Sets of dimensionless conditions
for sufficient whirl stability of the two misaligned rotors are derived. The stability conditions are presented
in graphical form for deeper understanding of the effect of the flexible mechanical coupling stiffness and
angular misalignment on rotating machinery stability. The results show that an increase in angular
misalignment or mechanical coupling stiffness terms leads to an increase of the model stability region.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of misalignment as encountered in rotating machinery is of great concern to
designers and maintenance engineers. It has been observed by the author on several occasions that
rotating machinery stability conditions can change should the alignment state between the driver
and the driven machines change. Due to the high speed of some rotating machinery, the need for a
better understanding of the phenomena is becoming a necessity for practical engineers for the
purpose of troubleshooting. Most rotating equipment consists of a driver and driven machine
coupled through a mechanical coupling. Flexible mechanical couplings are becoming widely used in
rotating machinery units. The mechanical coupling is used mainly to transmit torque from the
driver to the driven machine. The two connected machines can go under misalignment, where severe
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misalignment can cause high vibration to the machinery assembly. There are many publications on
rotor stability, however, to the author’s knowledge, there is little in the way of quantitative studies
describing the coupling stiffness and misalignment effect on rotating equipment stability.

The application of flexible couplings for turbomachinery were discussed by Mancuso [1]. This
reference includes reasons for using flexible couplings, difference between gear and flexible
element couplings, and the selection of couplings for new applications. Lorenzen et al. [2]
introduced a comparison of critical speeds of a high-speed compressor train alternatively
equipped with different types of couplings. In this reference, the unbalance response using
different types of couplings was calculated, which led to the conclusion that solid-type couplings
can make the system more stable compared to other types of couplings. Rosenberg [3] presented
the critical speed behavior of rotating shafts driven by universal couplings. It was shown that the
model can develop mild instabilities at odd order integer submultiples of the critical speed. Al-
Hussain and Redmond [4] studied the dynamic response of two Jeffcott rotors connected by rigid-
type couplings with parallel misalignment. The study investigated the steady state and transient
response of the system and concluded that the presence of lateral and torsional coupling are
coupled. Sekhar and Prabhu [5] presented the effects of coupling misalignment on turbomachin-
ery vibrations focusing on the effect of the location of the coupling with respect to the bending
mode. Xu and Marangoni [6] presented a theoretical model of a complete motor rotor flexible
coupling, discussing the system response under angular misalignment.

Saigo et al. [7] conducted theoretical and experimental investigations into the instability of a
rotor system induced by coulomb friction in the universal joint. Nikolajsen [8] illustrated the large
variation in the instability threshold speed, with radial bearing misalignment. He also showed how
to determine the level of bearing misalignment that leads to optimum rotor stability. Chang and
Cheng [9] analyzed the instability and non-linear dynamics of a slender rotating shaft with a rigid
disk at the mid-span; the model studied is a simply supported shaft. Vance [10] discussed the
response and stability of a single Jeffcott rotor on hydrodynamic bearings. He presented the whirl
stability characteristics of hydrodynamic bearings as a function of the equilibrium eccentricity. A
simplified approach to rotordynamic stability and concise analysis procedure for between-bearing
rotors is presented by Stroh [11]. The technique combines the destabilizing effect and threshold
value of excitation to evaluate the system stability.

The most common method, used in the literature, to derive stability criteria for rotor-bearing
systems is by solving for the eigenvalues of the sets of equations of motion [12]. Lund [13] studied the
nature of the eignenvalues for a uniform shaft supported at the ends by damped bearings. The
Routh–Hurwitz criterion is also commonly used to study the stability of linearized rotor-bearing
system, as presented by Dimarogonas and Haddad [14]. The procedure for using the Routh–Hurwitz
criterion requires the system characteristic equation with linear coefficients. The use of Liapunov’s
direct method to evaluate the dynamic and parametric stability of elastic and rigid rotors-bearing
systems in the neighborhood of equilibrium is used by El-Marhomy and Schlack [15,16]. They
showed quantitatively the effect of different shaft and bearing parameters on the stability regions.
Meirovitch [17] presented Liapunov’s direct method to determine the dynamic system stability
characteristics without solving the system differential equations. Numerical investigations are often
time adopted to study the stability of rigid rotors supported in plain bearings [18].

To this end, one can summarize that few studies have covered the detailed approach of
analyzing the effect of angular misalignment on rotating machinery stability. To the knowledge of
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the authors, no study has quantified the effect of coupling angular misalignment on the stability of
rotating machinery, which had been experienced in rotating machinery on a number of occasions.

The present work is devoted toward the analysis of stability due to angular misalignment, to aid
practical rotating equipment engineers to gain inclusive understanding of the role played by
misalignment and other parameters on the stability of the system under study. The need of this
study is coming from the author’s field experience that the alignment condition can affect the
rotating machine stability. The work starts by introducing a simple model that consists of two
rigid rotors mounted on hydrodynamic bearings that contain principal and cross-coupling
stiffness and damping terms. Due to the non-linearity of the system, the dimensionless stability
criteria are derived using Liapunov’s direct method. To gain a greater insight of the effect of
angular misalignment on stability, graphical presentations for different dimensionless stability
parameters are presented.

2. The dynamic model

2.1. System descriptions and assumptions

Two disks m1 and m2 are each mounted at the center of two rigid rotors that are connected
through a flexible-type coupling. The two shafts are initially in a state of angular misalignment of
magnitude a; as shown in Fig. 1. The two shafts are rigid and have lengths of l1 and l2:

Each rotor is supported by two hydrodynamic bearings with eight coefficients of stiffness and
damping, including cross-coupling terms, as shown in Fig. 2. The xp; yp; zp rotating co-ordinates
are located at the centers of the mass with unit vectors ip; jp;kp; respectively.

For simplification purposes, it is assumed that the two rotors are misaligned, with a static
angular misalignment a: Assuming small angular displacements, the position vectors at different
locations on the shafts described in Fig. 1 can be represented by

rmp ¼ xpip þ ypjp þ zpkp; ð1Þ

where p indicates shaft 1 or 2:

rbp1 ¼ xp �
lp

2
yp

� �
ip þ yp �

lp

2
fp

� �
jp þ zp �

lp

2

� �
kp; ð2Þ
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rbp2 ¼ xp þ
lp

2
yp

� �
ip þ yp þ

lp

2
fp

� �
jp þ zp þ

lp

2

� �
kp; ð3Þ

rcp ¼ xp þ
lp

2
þ a

� �
yp

� �
ip þ yp þ

lp

2
þ a

� �
fp

� �
jp þ zp þ

lp

2
þ a

� �� �
kp: ð4Þ

The two disks are assumed rigid and their instantaneous angular velocities are

xp ¼ oxpi2 þ oypjp þ ozpkp; ð5Þ

oxp

oyp

ozp

2
64

3
75 ¼

’fp � ’bp sin yp

’yp cosfp � ’bp cos yp sin fp

’bp cos yp cosfp þ ’fp sin yp

2
664

3
775; ð6Þ

where f in the x direction, y in the y direction, and b in the z direction. By linearizing Eq. (6),
neglecting the higher terms, the angular velocities become

oxp

oyp

ozp

2
64

3
75 ¼

’fp � ’bpyp

’yp � ’bpfp

’bp þ yp
’fp

2
664

3
775: ð7Þ

Using co-ordinate transformation, the coupling hub position rc2; of rotor 2, can be expressed in
terms of rotor 1 unit vectors for use in a potential energy expression

rc2 ¼ x2 �
l2

2
þ a

� �
y2

� �
cos a� z2 �

l2

2
þ a

� �� �
sin a

� �
i1 þ y2 �

l2

2
þ a

� �
f2

� �
j1

� x2 �
l2

2
þ a

� �
y2

� �
sin aþ z2 �

l2

2
þ a

� �� �
cos a

� �
k1: ð8Þ
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2.2. Kinetic, potential, and dissipation energy expressions

It is assumed that the two shafts are massless and have the same lengths and mounted on
similar bearings. The total kinetic energy expression of the two rotors become

T ¼
1

2

X2
p¼1

fmp’rmp � ’rmp þ IDpðo2
xp þ o2

ypÞ þ IPpo2
zpg: ð9Þ

The generalized co-ordinates of the model under consideration can be expressed as

q ¼ fx1; y1;f1; y1; x2; y2;f2; y2; z1; z2g: ð10Þ

Carrying the time derivative of the unit vector ’rmp; substituting in Eq. (9), and using the angular
velocity expressions designated by Eq. (7), the total kinetic energy becomes

T ¼
1

2

X2
p¼1

fmpf ’xp � ypð ’bp þ ’fpypÞ � zpð’yp � ’bpfpÞg
2 þ f ’yp � xpð ’bp þ ’fpypÞ

� zpð ’fp � ’bpypÞg
2 þ f’zp � xpð’yp � ’bpfpÞ þ ypð ’fp � ’bpypÞg

2

þ IDpfð ’fp � ’bpypÞ
2 þ ð’yp � ’bpfpÞ

2g þ IPpð ’bp þ ’fpypÞ
2g: ð11Þ

For simplification purposes, assume all bearings are similar and both shafts have the same
lengths l1 ¼ l2: Utilizing the position vectors of Eqs. (2)–(4), the potential energy for the total
assembly can be given as

V ¼
1

2

X
i

X
j

kijqiqj

¼
X2
p¼1

"
1

2
kxx xp �

l

2
yp

� �2

þ xp þ
l

2
yp

� �2
( )

:

þ
1

2
kyy yp �

l

2
fp

� �2

þ yp þ
l

2
fp

� �2
( )

þ
1

2
kxy xp �

l

2
yp

� �
yp �

l

2
fp

� �
þ xp þ

l

2
yp

� �
yp þ

l

2
fp

� �� �

þ
1

2
kyx xp �

l

2
yp

� �
yp �

l

2
fp

� �
þ xp þ

l

2
yp

� �
yp þ

l

2
fp

� �� �#

þ kcx ðx1 � x2 cos aÞ þ
l

2
þ a

� �
ðy1 þ y2 cos aÞ þ z2 �

l

2
þ a

� �� �
sin a

� �2
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þ kcy ðy1 � y2Þ þ
l

2
þ a

� �
ðf1 þ f2sin aÞ

� �� �2

þ kcz ðz1 � z2 cos aÞ þ
l

2
þ a

� �
ð1þ cos aÞ

� �
� x2 þ

l

2
þ a

� �
y2

� �
sin a

� �2
þ kcfðf1 � f2 cos aþ b2 sin aÞ2 þ kcyðy1 � y2Þ

2 þ kcbðb1 � f2 sin a� b2 cos aÞ
2: ð12Þ

Since the model assembly is fitted with the same bearings in all designated locations, Fig. 1, and
the damping cross-coupling terms of each bearing are equal cxy ¼ cyx; the energy dissipation due
to bearing damping can be written as

D ¼
1

2

X
i

X
j

cij ’qi ’qj

¼
X2
p¼1

"
1

2
Cxx ’xp �

l

2
’yp

� �2

þ ’xp þ
l

2
’yp

� �2
( )

:

þ
1

2
Cyy ’yp �

l

2
’fp

� �2

þ ’yp þ
l

2
’fp

� �2
( )

þ Cxy ’xp �
l

2
’yp

� �
’yp �

l

2
’fp

� �
þ ’xp þ

l

2
’yp

� �
’yp þ

l

2
’fp

� �� #
: ð13Þ

Eq. (13) shows that angular misalignment has no influence on the dissipated energy and the
effect of dissipated energy on stability is well covered in the literature; therefore, it is omitted from
this work.

2.3. Stability condition due to system stiffness and gyroscopic effects

Since the system can be described by the Lagrangian L ¼ T � V where T is the kinetic energy
of the system and V is the potential energy of the system. The general form of the kinetic energy
can be expressed as

Tðq; ’qÞ ¼ 1
2
’qTAðqÞ’qþ BðqÞ’qþ CðqÞ: ð14Þ

For a conservative system, the Hamiltonian, which can be written as H ¼ T2 � T0 þ V may be
used as a Liapunov’s function in the region of equilibrium that is qi ¼ ’qi ¼ 0; where T2 ¼
1
2
’qTAðqÞ’q; T1 ¼ BðqÞ’q;T0 ¼ CðqÞ labelled according to the power of ’q: Since T2 is a positive

function of the generalized velocities, then the remaining terms of the Hamiltonian U ¼ �T0 þ V
can be checked for the sign definite in the region of equilibrium to determine the stability criteria
of the conservative system. Therefore, U can be considered as Liapunov’s function and if it is a
positive definite function of the generalized co-ordinates in the neighborhood of equilibrium, then
the system is stable.

To simplify the solution further, it is assumed that the assembly rotational velocity is constant,
’b ¼ O; neglecting the small variation in the rotating speed, and angular misalignment a is small.
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The potential energy equation can be simplified to

U ¼
X2
p¼1

1

2
kxx xp �

l

2
yp

� �2

þ xp þ
l

2
yp

� �2
( )"

þ
1

2
kxy xp �

l

2
yp

� �
yp �

l

2
fp

� �
þ xp þ

l

2
yp

� �
yp þ

l

2
fp

� �� �

þ
1

2
kyx xp �

l

2
yp

� �
yp �

l

2
fp

� �
þ xp þ

l

2
yp

� �
yp þ

l

2
fp

� �� �

þ
1

2
kyy yp �

l

2
fp

� �2

þ yp þ
l

2
fp

� �2
( )#

þ kcx ðx1 � x2Þ þ
l

2
þ a

� �
ðy1 þ y2Þ þ z2 �

l

2
þ a

� �� �
a

� �2

þ kcy ðy1 � y2Þ þ
l

2
þ a

� �
ðf1 þ f2aÞ

� �� �2

þ kcz ðz1 � z2Þ þ
l

2
þ a

� �
ð2Þ

� �
� x2 þ

l

2
þ a

� �
y2

� �
a

� �2
þ kcfðf1 � f2Þ

2 þ kcyðy1 � y2Þ
2 þ kcbðf2aÞ

2

X2
p¼1

�
1

2
mpfðypO� zpOfpÞ

2 þ ðxpO� zpOypÞ
2 þ ðxpfpO� ypOypÞ

2g
�

�
1

2
IDpðO2y2p þ O2f2

pÞ �
1

2
IPpO2

�
: ð15Þ

Successive partial derivatives of U with respect to the generalized co-ordinates q ¼
fx1; y1;f1; y1; x2; y2;f2; y2; z1; z2g; evaluating each derivative at equilibrium, to form the following
Hessian matrix:

Q ¼

@2U

@q1 @q1

@2U

@q1 @q2
?

@2U

@q1 @qn

@2U

@q2 @q1

@2U

@q2 @q2
?

@2U

@q2 @qn

^ ^ ^ ^

@2U

@qn @q1

@2U

@qn @q1
?

@2U

@qn @qn

2
66666666664

3
77777777775

q¼ ’q¼0

: ð16Þ
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If the Hessian matrix Q is positive definite at equilibrium, then the system is stable. Neglecting the
rows and columns for the z co-ordinates and setting g ¼ 2ð1=2 l þ aÞ the matrix becomes

Q ¼

Q11 kxy þ kyx 0 gkcx �2kcx 0 0 gkcx

kxy þ kyx Q22 gkcy 0 0 �2kcy gakcy 0

0 gkcy Q33
1
4l

2ðkxy þ kyxÞ 0 �gkcy Q37 0

gkcx 0 1
4
l2ðkxy þ kxyÞ Q44 �gkcx 0 0 Q48

�2kcx 0 0 �gkcx Q55 kxy þ kyx 0 Q58

0 �2kcy �gkcy 0 kxy þ kyx Q66 �gakcy 0

0 gakcy Q73 0 0 �gakcy Q77
1
4l

2ðkxy þ kyxÞ

gkcx 0 0 Q84 Q85 0 1
4l

2ðkxy þ kyxÞ Q88

2
666666666666664

3
777777777777775

;

ð17Þ

where the matrix entries

Q11 ¼ 2ðkxx þ kcxÞ � m1O2; ð18Þ

Q22 ¼ 2ðkyy þ kcyÞ � m1O2; ð19Þ

Q33 ¼ 1
2
l2kyy þ g2kcy þ 2kcf � ID1O2; ð20Þ

Q44 ¼ 1
2
l2kxx þ g2kcx þ 2kcy � ID1O2; ð200Þ

Q55 ¼ 2ðkxx þ kcx þ a2kczÞ � m2O2; ð21Þ

Q66 ¼ 2ðkyy þ kcyÞ � m2O2; ð22Þ

Q77 ¼ 1
2
l2kyy þ g2a2kcy þ 2kcf þ 2a2kcb � ID2O2; ð23Þ

Q88 ¼ 1
2
l2kxx þ g2a2kcz þ 2kcy � ID2O2; ð24Þ

Q37 ¼ Q73 ¼ g2akcy � 2kcf; ð25Þ

Q48 ¼ Q84 ¼ g2kcx � 2kcy; ð26Þ

Q58 ¼ Q85 ¼ gðkcx � akczÞ: ð27Þ

To simplify the matrix further, keeping the parameters that lead to the understanding of the
angular misalignment effect, assume

m1 ¼ m2 ¼ m; ID1 ¼ ID2 ¼ I :

Dividing Q by mO2; and introducing

o2
cf ¼

kcf

ml2
; o2

cy ¼
kcy

ml2
and o2

ij ¼
kij

m

the Q matrix becomes dimensionless, Qn:
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A
R
TIC

LE
IN

PR
ES

S

Qn ¼

Qn
11

o2
xy þ o2

yx

O2

 !
0 g

o2
cx

O2

� �
�2

o2
cx

O2

� �
0 0 g

o2
cx

O2

� �

o2
xy þ o2

yx

O2

 !
Qn

22 g
o2

cy

O2

 !
0 0 �2

o2
cy

O2

 !
ga

o2
cy

O2

 !
0

0 g
o2

cy

O2

 !
Qn

33
1
4
l2

o2
xy þ o2

yx

O2

 !
0 �g

o2
cy

O2

 !
Qn

37 0

g
o2

cx

O2

� �
0 1

4
l2

o2
xy þ o2

yx

O2

 !
Qn

44 �g
o2

cx

O2

� �
0 0 Qn

48

�2
o2

cx

O2

� �
0 0 �g

o2
cx

O2

� �
Qn

55

o2
xy þ o2

yx

O2

 !
0 Qn

58

0 �2kcy

o2
cy

O2

 !
�g

o2
cy

O2

 !
0

o2
xy þ o2

yx

O2

 !
Qn

66 �ga
o2

cy

O2

 !
0

0 ga
o2

cy

O2

 !
Qn

73 0 0 �ga
o2

cy

O2

 !
Qn

77
1
4
l2

o2
xy þ o2

yx

O2

 !

g
o2

cx

O2

� �
0 0 Qn

84 Qn
85 0 1

4l
2

o2
xy þ o2

yx

O2

 !
Qn

88

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

:

ð28Þ

K
.M

.
A

l-H
u

ssa
in

/
J

o
u

rn
a

l
o

f
S

o
u

n
d

a
n

d
V

ib
ra

tio
n

2
6

6
(

2
0

0
3

)
2

1
7

–
2

3
4

2
2
5



Matrix entries presented in Eqs. (18)–(27) can be written in dimensionless form

Qn

11 ¼ 2
o2

xx þ o2
cx

O2

� �
� 1; ð29Þ

Qn

22 ¼ 2
o2

yy þ o2
cy

O2

 !
� 1; ð30Þ

Qn

33 ¼ l2
1

2

o2
yy

O2

 !
þ

g2

l2

o2
cy

O2

 !
þ 2

o2
cf

O2

 !
�

I

ml2

 !
; ð31Þ

Qn

44 ¼ l2
1

2

o2
xx

O2

� �
þ
g2

l2
o2

cx

O2

� �
þ 2

o2
cy

O2

� �
�

I

ml2

� �
; ð32Þ

Qn

55 ¼ 2
o2

xx

O2

� �
þ

o2
cx

O2

� �
þ a2

o2
cz

O2

� �� �
� 1

� �
; ð33Þ

Qn

66 ¼ 2
o2

yy

O2

 !
þ

o2
cy

O2

 !" #
� 1

 !
; ð34Þ

Qn

77 ¼ l2
1

2

o2
yy

O2

 !
þ

g2a2

l2

o2
cy

O2

 !
þ 2

o2
cf

O2

 !
�

I

ml2

 !
; ð35Þ

Qn

88 ¼ l2
1

2

o2
xx

O2

� �
þ

g2a2

l2
o2

cz

O2

� �
þ 2

o2
cy

O2

� �
�

I

ml2
O2

� �
; ð36Þ

Qn

37 ¼ Qn

73 ¼ g2a
o2

cy

O2

 !
� 2

o2
cf

O2

 !
; ð37Þ

Qn

48 ¼ Qn

84 ¼ g2
o2

cx

O2

� �
� 2

o2
cy

O2

� �
; ð38Þ

Qn

58 ¼ Qn

85 ¼ g
o2

cx

O2

� �
� a

o2
cz

O2

� �� �
: ð39Þ

By setting m ¼ I=ml2 and g2=l2 ¼ 1; the conditions for sufficient stability for the misaligned
model under study are the conditions that make the Hermitian matrix Q positive definite. If we
assume that the dimensionless Hermitian matrix is positive definite then all of the diagonal
elements are positive and Qn

iiQ
n
jj > jQn

ij j
2; for distinct i and j: The following conditions are sufficient

condition for the model to become asymptotically stable, providing jQj > 0:

o2
xx þ o2

cx

O2

� �
>
1

2
; ð40Þ
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� �
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yy þ o2
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 !
�

1

2

 !
>
1

4

o2
xy þ o2

yx

O2

 !2

; ð41Þ

o2
yy

O2

 !
þ 2

o2
cy

O2

 !
þ 4

o2
cf

O2

 !
� 2m

 !
> 0; ð42Þ

o2
yy

O2

 !
þ 2

o2
cy

O2

 !
þ 4

o2
cf

O2

 !
� 2m

 !
o2

xx

O2

� �
þ 2

o2
cx

O2

� �
þ 4

o2
cy

O2

� �
� 2m

� �
>
1

4

o2
xy þ o2

yx

O2

 !2

;

ð43Þ

o2
xx

O2

� �
þ

o2
cx

O2

� �
þ a2

o2
cz

O2

� �
�

1

2

� �
> 0; ð44Þ

o2
xx

O2

� �
þ

o2
cx

O2

� �
þ a2

o2
cz

O2

� �
�

1

2

� �
o2

yy

O2

 !
þ

o2
cy

O2

 !
�

1

2

 !
>
1

4

o2
xy þ o2
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O2

 !2

; ð45Þ

o2
yy

O2

 !
þ 2a2

o2
cy

O2

 !
þ 4

o2
cf

O2

 !
� 2m

 !
> 0; ð46Þ

o2
yy

O2

 !
þ 2a2

o2
cy
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 !
þ 4

o2
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 !
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 !

�
o2

xx
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� �
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o2
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� �
þ 4

o2
cy

O2

� �
� 2m

� �
>
1

4

o2
xy þ o2

yx

O2

 !2

: ð47Þ

These stability criteria determine the conditions for the system to be stable. In Eqs. (44)–(47), the
square of angular misalignment is a multiplication factor for one of the coupling stiffness
coefficients, increasing angular misalignment causes an increase in the system principal stiffness
coefficients.

3. Presentation of results and discussion

Eqs. (40)–(47) represent conditions for whirl stability of the two rigid rotors connected through
a flexible mechanical coupling with angular misalignment. All of these stability conditions show
that the coupling dimensionless parameters (DP) and angular misalignment play a major role in
the stability of the model. The bearing principal and cross-coupling DP are functions of the
hydrodynamic characteristics which are obtained from the solution of Reynolds’ equation. The
solution gives stiffness and viscous damping coefficients in dimensionless form as a function of
Sommerfeld number [10].

The stability condition (40) shows that coupling DP component is added to the bearing
principal DP in the x direction; this is a result of the addition of the bearing principal stiffness and
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coupling stiffness terms in the x and y directions. The condition expression indicates that the
combined bearing principal and coupling DP in the x direction needs to be greater than 1

2
; to

maintain stability of the model under study.
Eq. (41) represents the second stability criteria; combining the coupling stiffness with the

bearing principal stiffness and assuming they are equal for the purpose of demonstration, the
equation reduces to ðWcxx � 1=2ÞðWcyy � 1=2Þ > Wxy2; where Wcxx ¼ ðo2

xx þ o2
cxÞ=O

2; Wcyy ¼
ðo2

yy þ o2
cyÞ=O

2; and Wxy ¼ ðo2
xy þ o2

yxÞ=2O
2: Fig. 3 clearly demonstrates the influence of the

bearing cross-coupling DP on the model stability. The different curves in Fig. 3 are for different
values of the bearing cross-coupling terms, this indicates that the stability region reduces as the
cross-coupling DP increases. For the case that the cross-coupling DP term, Wxy is zero, the
stability threshold becomes 1

2
:

Eq. (42) depends on coupling radial DP for the y and f directions and the bearing principal DP
in the y direction. The threshold of stability is a function of the dimensionless parameter 2m: To
simplify the presentation of this condition, assume that the dimensionless coupling stiffness
parameters are equal to o2

cyf=O
2; the condition reduces to Wyy ¼ 2m� 6Wcyp; if it assumed that

Wyy ¼ o2
yy=O

2; 6 Wcyp ¼ 2ðo2
cy=O

2Þ þ 4ðo2
cf=O

2Þ; and o2
cy=O

2 ¼ o2
cf=O

2: The variation of the
stability region depends on the value of m as shown in Fig. 4. Increasing the disk transverse
moment of inertia, decreasing the mass or the shaft length increases m; this leads to the reduction
of the stability region. It is obvious that increasing the coupling DP, which depends on the
coupling stiffness leads to making the system more stable.

Eq. (43) combines the effect of the bearing and coupling DPs, where threshold stability
depends on the dimensionless term m: Assuming the DPs are all equal, then the equation
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can be simplified to ðWcyf� 2mÞðWcxy� 2mÞ ¼ Wxy2; assuming Wcyf ¼ ðo2
yy=O

2Þþ
2ðo2

cy=O
2Þ þ 4ðo2

cf=O
2Þ;Wcxy ¼ ðo2

xx=O
2Þ þ 2ðo2

cx=O
2Þ þ 4ðo2

cy=O
2Þ; and Wxy ¼ o2

xy þ o2
yx=2O

2:
Graphical presentation of this equation is shown in Fig. 5. As expected, the stability region
decreases as the dimensionless term m increases.

Eqs. (44)–(47) are directly dependent on the model angular misalignment a: In practical terms a
flexible-type coupling may not tolerate more than 11 (17.5mrad) of angular misalignment, this
amount of misalignment will cause excessive dynamic forces on the bearings. However, the study
is intended to determine the stability sensitivity to angular misalignment in dimensionless form.
Eq. (44) indicates that introducing an angular misalignment tends to directly increase the system
principal DP, and makes the system more stable.

The stability condition presented by Eq. (45) can be simplified in similar way to ðWcxz �
1=lÞðWcyy � 1=4Þ ¼ Wxy2=l; by setting Wcxz ¼ o2

xx=O
2 ¼ o2

cx=O
2 ¼ o2

cz=O
2; Wcyy ¼ o2

yy=O
2 ¼

o2
cy=O

2; Wxy ¼ o2
xy þ o2

yx=2O
2; and l ¼ 2ð2þ a2Þ; to demonstrate the effect of angular

misalignment. This condition is evaluated at different values of angular misalignments, as
presented in Fig. 6.

The angular misalignment effect is presented by maintaining the same principal and cross-
coupling DP in each plot. It is obvious from the graphs that angular misalignment affects the
stability condition, as the angular misalignment increases the stability region increases
accordingly.

The stability conditions presented by Eqs. (46) and (47) indicate that change in the angular
misalignment a changes the stability region, the square of a is multiplied by one of the coupling
DP. Eq. (47) can be simplified further to focus on the effect of the angular misalignment as
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ðWcyp � 2m=lÞðWcxz � 2m=lÞ ¼ ðWxy=lÞ2; where

Wcyp ¼
o2

yy

O2

 !
þ 2a2

o2
cy

O2

 !
þ 4

o2
cf

O2

 !
;

o2
yy

O2
¼

o2
cy

O2
¼

o2
cf

O2
;

Wcxz ¼
o2

xx

O2

� �
þ 2a2

o2
cz

O2

� �
þ 4

o2
cy

O2

� �
;

o2
xx

O2
¼

o2
cz

O2
¼

o2
cy

O2
; Wxy ¼

ðo2
xy þ o2

yxÞ

2O2

and l ¼ ð5þ 2a2Þ:
Fig. 7 consists of four different graphs, each for different values of misalignments, as indicated.

The graphs show that an increase of the angular misalignment magnitude leads to an increase in
the stability region, while keeping the DP the same. Angular misalignment reduces the cross-
coupling term Wxy and for the stability condition threshold 2m=l at the same time, both of which
tend to improve stability. Should the polar moment of inertia be neglected the dimensionless
variable m becomes zero and the stability threshold coincide with the zero axis.

Fig. 8 presents the stability surface threshold for the condition of Eq. (47). The graph is
generated for different values of a; making the dimensionless term m ¼ 1

2
: The system is stable for

values inside the stability surface. As the combined coupling and bearing principal stiffness terms
increase the system becomes more stable. The four plots are for different values of angular
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misalignment magnitudes, as indicated in the graphs. Increasing the angular misalignment
magnitude tends to increase the volume of the stability region.

4. Conclusions

In this study, the effect of angular misalignment of two rigid rotors connected through a flexible
mechanical coupling has been presented. The model consists of two rigid rotors coupled through a
flexible mechanical coupling, a rigid mass attached at the middle of each rotor. Each rotor is
mounted on two sets of hydrodynamic bearing that exhibit asymmetric principal stiffness and
cross-coupling terms. The system degrees of freedom are the six orthogonal lateral deflections and
the six angular rotations, which permits to inclusion of gyroscopic effects.

The system kinetic, potential, and dissipation energies are derived. Due to the non-linearity of
the system, stability criteria are obtained using Liapunov’s direct method through successive
partial derivation of the Hamiltonian, which is obtained from the kinetic and potential energies.
The conditions for sufficient stability of the system are derived through the check of positive
definiteness of the resultant Hamiltonian matrix. The closed form whirl stability conditions are
presented in terms of dimensionless stability parameters for generalization purpose. The
dimensionless stability criteria, presented in graphical form clearly show that angular
misalignment and coupling stiffness play a major role on the whirl stability of the system under
study. As the angular misalignment or coupling stiffness terms increase, the stability regions
increase accordingly.
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Appendix A. Nomenclature

a shaft overhung
cxx bearing principal damping, x direction
cyy bearing principal damping, y direction
cxy; cyx bearing cross-coupling damping terms
D energy dissipation
H Hamiltonian matrix
IDp transverse moment of inertia for disk p
IPp polar moment of inertia for disk p

ip unit vector in the xp direction
jp unit vector in the yp direction
kp unit vector in the zp direction
kij stiffness element
kxx bearing principal stiffness, x direction
kyy bearing principal stiffness, y direction
kxy; kyx bearing cross-coupling stiffness terms
kcx coupling stiffness, x direction
kcy coupling stiffness, y direction
kcz coupling stiffness, z direction
kcf coupling stiffness, f direction
kcy coupling stiffness, y direction
kcb coupling stiffness, b direction
lp bearing span of rotor p

mp mass p attached to rotor p
p subscript indicates rotor 1 or 2
Q matrix
Qn dimensionless matrix
q generalized co-ordinate
rb1p position vector of bearing 1 of rotor p

rb2p position vector of bearing 1 of rotor p
rmp position vector of mass p of rotor p
rcp position vector of coupling half of rotor p

rmp velocity vector of mass p of rotor p
T kinetic energy
U remaining terms of Hamiltonian matrix
V potential energy
xp x displacement of mass p

’xp x velocity of mass p

yp y displacement of mass p

’yp y velocity of mass p

zp z displacement of mass p

’zp z velocity of mass p
a angular misalignment magnitude
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f angular displacement in x direction
y angular displacement in y direction
b angular displacement in z direction
’f angular velocity in x direction
’y angular velocity in y direction
’b angular velocity in z direction
O rotating speed
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